312 research outputs found

    A Bound on the Light Emitted During the TP-AGB Phase

    Full text link
    The integrated luminosity of the TP-AGB phase is a major uncertainty in stellar population synthesis models. We use the white dwarf initial final mass relation and stellar interiors models to demonstrate that a significant fraction of the core mass growth for intermediate (1.5 < Msun < 6) mass stars takes place during the TP-AGB phase. We find evidence that the peak fractional core mass contribution for TP-AGB stars is ~20% and occurs for stars between 2 Msun and 3.5 Msun. Using a simple fuel consumption argument we couple this core mass increase to a lower limit on the TP-AGB phase energy output. Roughly half of the energy released in models of TP-AGB stars can be directly accounted for by this core growth; while the remainder is predominantly the stellar yield of He. A robust measurement of the emitted light in this phase will therefore set strong constraints on helium enrichment from TP-AGB stars, and we estimate the yields predicted by current models as a function of initial mass. Implications for stellar population studies and prospects for improvements are discussed.Comment: Submitted to the Astrophysical Journal. 25 pages, 2 figures

    Managing clustering effects and learning effects in the design and analysis of multicentre randomised trials: a survey to establish current practice.

    Get PDF
    BACKGROUND:Patient outcomes can depend on the treating centre, or health professional, delivering the intervention. A health professional's skill in delivery improves with experience, meaning that outcomes may be associated with learning. Considering differences in intervention delivery at trial design will ensure that any appropriate adjustments can be made during analysis. This work aimed to establish practice for the allowance of clustering and learning effects in the design and analysis of randomised multicentre trials. METHODS:A survey that drew upon quotes from existing guidelines, references to relevant publications and example trial scenarios was delivered. Registered UK Clinical Research Collaboration Registered Clinical Trials Units were invited to participate. RESULTS:Forty-four Units participated (N = 50). Clustering was managed through design by stratification, more commonly by centre than by treatment provider. Managing learning by design through defining a minimum expertise level for treatment provider was common (89%). One-third reported experience in expertise-based designs. The majority of Units had adjusted for clustering during analysis, although approaches varied. Analysis of learning was rarely performed for the main analysis (n = 1), although it was explored by other means. The insight behind the approaches used within and reasons for, or against, alternative approaches were provided. CONCLUSIONS:Widespread awareness of challenges in designing and analysing multicentre trials is identified. Approaches used, and opinions on these, vary both across and within Units, indicating that approaches are dependent on the type of trial. Agreeing principles to guide trial design and analysis across a range of realistic clinical scenarios should be considered

    Resolving the Steiner Point Removal Problem in Planar Graphs via Shortcut Partitions

    Full text link
    Recently the authors [CCLMST23] introduced the notion of shortcut partition of planar graphs and obtained several results from the partition, including a tree cover with O(1)O(1) trees for planar metrics and an additive embedding into small treewidth graphs. In this note, we apply the same partition to resolve the Steiner point removal (SPR) problem in planar graphs: Given any set KK of terminals in an arbitrary edge-weighted planar graph GG, we construct a minor MM of GG whose vertex set is KK, which preserves the shortest-path distances between all pairs of terminals in GG up to a constant factor. This resolves in the affirmative an open problem that has been asked repeatedly in literature.Comment: Manuscript not intended for publication. The results have been subsumed by arXiv:2308.00555 from the same author

    ZFOURGE: Extreme 5007AËš\AA emission may be a common early-lifetime phase for star-forming galaxies at z>2.5z > 2.5

    Get PDF
    Using the \prospector\ spectral energy distribution (SED) fitting code, we analyze the properties of 19 Extreme Emission Line Galaxies (EELGs) identified in the bluest composite SED in the \zfourge\ survey at 2.5≤z≤42.5 \leq z \leq 4. \prospector\ includes a physical model for nebular emission and returns probability distributions for stellar mass, stellar metallicity, dust attenuation, and nonparametric star formation history (SFH). The EELGs show evidence for a starburst in the most recent 50 Myr, with the median EELG having a specific star formation rate (sSFR) of 4.6 Gyr−1^{-1} and forming 15\% of its mass in this short time. For a sample of more typical star-forming galaxies (SFGs) at the same redshifts, the median SFG has a sSFR of 1.1 Gyr−1^{-1} and forms only 4%4\% of its mass in the last 50 Myr. We find that virtually all of our EELGs have rising SFHs, while most of our SFGs do not. From our analysis, we hypothesize that many, if not most, star-forming galaxies at z≥2.5z \geq 2.5 undergo an extreme Hβ\beta+[\hbox{{\rm O}\kern 0.1em{\sc iii}}] emission line phase early in their lifetimes. In a companion paper, we obtain spectroscopic confirmation of the EELGs as part of our {\sc MOSEL} survey. In the future, explorations of uncertainties in modeling the UV slope for galaxies at z>2z>2 are needed to better constrain their properties, e.g. stellar metallicities.Comment: 11 pages, 5 figures (main figure is fig 5), accepted for publication in Ap

    Obligate Heterodimerization of the Archaeal Alba2 Protein with Alba1 Provides a Mechanism for Control of DNA Packaging

    Get PDF
    SummaryOrganisms growing at elevated temperatures face a particular challenge to maintain the integrity of their genetic material. All thermophilic and hyperthermophilic archaea encode one or more copies of the Alba (Sac10b) gene. Alba is an abundant, dimeric, highly basic protein that binds cooperatively and at high density to DNA. Sulfolobus solfataricus encodes a second copy of the Alba gene, and the Alba2 protein is expressed at ∼5% of the level of Alba1. We demonstrate by NMR, ITC, and crystallography that Alba2 exists exclusively as a heterodimer with Alba1 at physiological concentrations and that heterodimerization exerts a clear effect upon the DNA packaging, as observed by EM, potentially by changing the interface between adjacent Alba dimers in DNA complexes. A functional role for Alba2 in modulation of higher order chromatin structure and DNA condensation is suggested

    Children Are Not Just Small Adults: The Urgent Need for High-Quality Trial Evidence in Children

    Get PDF
    Terry Klassen and colleagues discuss a new study examining whether children and adults with drug-resistant partial epilepsy respond differently to antiepileptic drugs
    • …
    corecore